Je kan aan de hand van figuren kwalitatief het verband aanbrengen tussen bewegingsverandering en de resulterende kracht. In een eerste stap bespreken we snelheid als een vectorïele grootheid. Elke verandering in deze snelheid (grootte en/of oriëntatie) is een verandering van bewegingstoestand. Vervolgens gebruiken we eenvoudige situaties om deze bewegingsveranderingen te linken aan een inwerkende resulterende kracht.
Wenk: Je kan de snelheid als vector voorstellen en kwalitatief aangeven hoe de vector verandert bij de bewegingsverandering.
Wenk: Je kan voorbeelden geven van verandering van de bewegingstoestand om aan te sluiten bij de eerste graad: botsen van een bal (veranderen van zin), een bocht nemen (verandering van richting), versnellen of vertragen (verandering van grootte).
Wenk: Het is zinvol om de vectoriële krachtensom in één dimensie te tekenen. Als de resultante van de inwerkende krachten gelijk is aan nul blijft de bewegingstoestand behouden. Het voorwerp blijft in rust of de snelheid zal onveranderd blijven: zowel grootte als richting van de snelheid blijven constant. Dit is het traagheidsbeginsel.
Wenk: Je kan voorbeelden geven van verandering van de bewegingstoestand om aan te sluiten bij de eerste graad: botsen van een bal (veranderen van zin), een bocht nemen (verandering van richting), versnellen of vertragen (verandering van grootte).
STEM-concepten ‘stabiliteit en verandering’ en ‘oorzaak en gevolg’.
Volgende situaties kunnen besproken worden: